Propelling the Future of Aviation 23rd International Society of Air-breathing Engines (ISABE) Conference

Charles Champion, Executive Vice President Engineering Airbus 6 September 2017

A commercial aircraft manufacturer with the two Divisions Defence and Space and Helicopters

> 134,000+ Total workforce

€1,060billion Order book **€67billion** Annual revenue

6 September 2017

Commercial Aircraft

54,000

Employees

€49.2billion

Annual revenue*

6,705

Backlog

400

Operators

6 September 2017

Aviation in figures

3.6billion Passengers

51.2million Tonnes of freight

\$2.7trillion62.7millionGlobal GDP* annuallyJobs supported

6 September 2017

23rd ISABE Conference

***GDP:** Gross Domestic Product

Source: ATAG 2016

AIRBUS CHALLENGES

PROPULSION JOURNEY

AIRBUS

6 September 2017

23rd ISABE Conference

Air Traffic will Double in the Next 15 Years

Air Transport is a Growth Market

More than double since 2001

*RPK: Revenue Passenger Kilometres

AIRBUS

Source: ICAO, Airbus GMF 2017

The Challenge for Aviation: Sustainable Growth

European Union's Flightpath 2050 -65%

NOx

Reference year: 2000

Noise

6 September 2017

History of a Continuous Fuel Burn Reduction

AIRBUS

6 September 2017

History of a Continuous Noise Reduction

Airbus Challenges

Sustainable growth & traffic doubling every 15 years

Commitment to the Flightpath 2050 technology targets

Remain consistently ahead of the competition

Being a game-changer is in Airbus DNA Innovation is key to success!

6 September 2017

AIRBUS CHALLENGES

PROPULSION JOURNEY

AIRBUS

6 September 2017

23rd ISABE Conference

AIRBUS

6 September 2017

23rd ISABE Conference

The Eco-Efficiency & Performance Levers

Road to the Future

Enhance existing platforms & preparing for new configurations

Towards new configurations & Urban Air Mobility

Through better integration & architecture

On the track of improving

Operations

AIRBUS

Weight

Fuel

Aerodynamic

Road to the Future

Enhance existing platforms & preparing for new configurations

New engines on existing products Advanced composites Additive Layer Manufacturing Predictive maintenance

> On the track of improving

Through better integration & architecture Towards new configurations & Urban Air Mobility

Operations

Weight

Aerodynamic

The neo story

Success

Aircraft changes mainly contained at engine level

> -20% fuel burn per seat

A320, a commercial success!

13,000 orders from 300 customers

Advanced Composites

Lighter & Stronger by Design

> Maximise weight reduction & fuel efficiency

AIRBUS

*CFRP: Carbon Fiber Reinforced Polymere

6 September 2

Weight

Design for Additive Layer Manufacturing

and and the second

AIRBUS

3D-printing: a strong asset for the future

only 50/0 waste

material

50% potential weight saving

up to

ISABE Conference

Predictive Maintenance

skywise

Operations

An Open Digital platform for the aviation industry

6 September 2017

23rd ISABE Conference

Give prior indication of a component/system failure

Thanks to systematic transmission of massive data & data analytics

Allow anticipation & planning of the maintenance

Prevent unexpected failures & operational interruptions

PERFORMANCE

RELIABII

SYSTEM INTEGRITY

AIRBUS

Road to the Future

Enhance existing platforms & preparing for new configurations

New engines on existing products Advanced composites Additive Layer Manufacturing Predictive maintenance

On the track of improving

Through better integration & architecture Towards new configurations & Urban Air Mobility

Weight

Fuel

Aerodynamic

Operations

Road to the Future

Enhance existing platforms & preparing for new configurations

New engines on existing products Advanced composites Additive Layer Manufacturing Predictive maintenance More Electrical Aircraft Heat management Optimized operations BLADE

Through better integration & architecture

On the track of improving

Towards new configurations & Urban Air Mobility

Operations

Weight

Fue

Aerodynamic

Fuel

More Electrical Aircraft

Architecture & Integration challenges

E-ECS: Electrical - Environmental Cabin System

Fuel

Heat Management

Optimize propulsion heat management Optimise cooling architecture & surface cooler integration Redesign cooling function thanks to heat mutualisation & transportation Add acoustic attenuation & structural function to surface coolers

to benefit from new propulsion systems

AIRBUS

Optimized Operations: 4D trajectory exchange

Operations

Breakthrough Laminar Aircraft Demonstrator in Europe (BLADE)

Minimised drag with **laminar flow**

2014 – 2015 Wind tunnel tests Laminar wing & Krueger flap demonstrator

Clean Sky

2016 First aircraft parts

Laminar flow dem

fuel burn expected

Aerodynamic

2017 Flight tests on Airbus A340

Road to the Future

Enhance existing platforms & preparing for new configurations

More Electrical Aircraft Heat management **Optimized operations** BLADE

New engines on existing products Advanced composites Additive Layer Manufacturing **Predictive maintenance**

On the track of improving

integration & architecture

Towards new configurations & Urban Air Mobility

Through better

Operations

Weight

Aerodynamic

Road to the Future

Enhance existing platforms & preparing for new configurations

- New engines on existing products Advanced composites Additive Layer Manufacturing **Predictive maintenance**
- More Electrical Aircraft Heat management **Optimized operations** BLADE

On the track of improving

- **Boundary Layer Ingestion Open Rotor Distributed propulsion**
- Hybrid propulsion

Through better integration & architecture

Towards new configurations & Urban Air Mobility

Operations

Weight

Aerodynamic

Towards new aircraft configurations

Boundary Layer Ingestion

> Minimises propulsor effort & reduce total drag

Aerodynamic

Benefit from slower moving air at the boundary layer

fuel burn reduction

Define optimum inlet distortion & fan reinforcement

Address propulsion integration in unusual location

Analyse & solve integration effects

AIRBUS

Open Rotor

Push propulsive efficiency to the limit \bigcirc Fuel burn saving vs. advanced UHBR

Lower cruise speed Position propulsion system for safety and comfort Cost challenge

..................

Hybrid Electric Propulsion

Explore new configurations

From electrical motoring boost

To full electrical motoring Develop technology bricks to investigate higher levels hybridation & distributed propulsion

Develop integration technologies and logistic solutions

Define certification basis with authorities

AIRBUS

Towards Urban Air Mobility

VOOM

CITYAIRBUS

VAHANA

POP!

23rd ISABE Conference

Conclusion

AIRBUS

Fusion of Propulsion System with the Overall Aircraft Design is a must

The engine is the key contributor to Aviation environmental challenges

Will we still need air breathing engines in 2050?

Are you ready for the paradigm shift?

